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A B S T R A C T

Acute kidney injury is a commonly encountered problem in criti-
cally ill patients. It is often part of the multi-system organ failure 
syndrome, where other organs, such as the lungs, are involved. In 
the intensive care unit patient, primary pathology in one organ can 
affect other organs, and systemic illness can affect multiple organs 
at  the same time. In this review article,  we closely examine the 
definition and stages of dysfunction in the lungs and kidneys and 
the relationship between the physiology and pathology of these two 
organs as they interact and affect each other in critically ill patients. 
We also seek to understand the effects common intensive care unit 
interventions have on both those organs, with a special emphasis on 
external life support devices such as mechanical ventilation, dialysis, 
and extracorporeal membranous oxygenation. 
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A K I / A R D S  D E F I N I T I O N
Acute respiratory distress syndrome (ARDS) is a 
type of acute progressive hypoxemic respiratory 
failure characterized by acute severe difficulty 
in breathing and low oxygen levels. Individuals 
with ARDS display widespread bilateral opaci-
ties on lung images (such as lung radiography 
or thoracic computed tomography), along with 
hypoxemia. ARDS was first  described in 1967 
when Asbaugh et al. observed acute respiratory 
distress in 12 patients (1). Subsequently, the defi-
nition of ARDS has undergone several revisions.
The current definition of ARDS is based on the 
criteria established in the Berlin definition of 
2012 (2). The key components of the Berlin defi-
nition are as follows:

1. Timing: ARDS is defined as the develop-
ment of new or worsening respiratory symp-
toms within one week of a known clinical 
event.
2.  Radiographic Findings:  Bilateral  infi l-
trates on chest X-ray or thoracic computed 
tomography (CT) which should not explained 
by atelectasis or nodules.
3. Exclusion of Cardiac Causes: In patients 
without an obvious inciting event for ARDS, 
it is important to confirm that heart failure 
or volume overload cannot fully explain the 
observed pulmonary edema. Additional tests, 
such as echocardiography, may be necessary 
to rule out cardiac causes.
4. Severity Grading: This definition intro-
duced a categorizat ion of  ARDS severi ty 
based on the ratio of partial  arterial  pres-
sure of oxygen to fraction of oxygen in the 
inspired air,  the so-called PF ratio (PaO2/
FIO2). The positive end-expiratory pressure 
(PEEP) level should be at least 5 cm H2O. 
The severity grades are as follows:

a. Mild ARDS: P/F ratio between 200-
300 mmHg 
b. Moderate ARDS: P/F ratio between 
100-200 mmHg.
c. Severe ARDS: P/F ratio less than 
100 mmHg.

Acute kidney injury (AKI) is  a sudden, often 
revers ible  decl ine  in  kidney funct ion,  of ten 
assessed by the glomerular filtration rate (GFR). 
AKI can occur up to 35% of the time in individu-
als with ARDS (3). When occurring together, AKI 
and ARDS predict  worse outcomes, including 
higher mortali ty and longer hospital  stays.  In 
previous investigations of AKI acquired in hos-
pitals and intensive care units (ICUs), a major 
chal lenge was the absence of  a  s tandardized 
definit ion (4).  Until  2004, tens of definit ions 
for AKI circulated, making it difficult to validate 
diagnostic and therapeutic interventions (5).

In 2012, the Kidney Disease: Improving Global 
Outcomes  (KDIGO) socie ty  developed evi -
dence-based and clinically relevant guidelines, 
incorporating a modified definition that is now 
widely used (6).  The definition and staging of 
AKI according to KDIGO criteria are as follows:

1. Definition:
a. An increase in serum creatinine (Cr) 
by ≥0.3 mg/dL (≥26.5 µmol/L) within 
48 hours, or
b.  An increase in Cr to  ≥1.5 t imes 
baseline within the prior week or
c. Urine volume <0.5 mL/kg/hour for 
6 consecutive hours (oliguria)

2.Staging:
a. Stage 1: Increase in serum creati-
nine to 1.5-1.9 times baseline or ≥0.3 
mg/dL (≥26.5 µmol/L) increase within 
48 hours, or urine output <0.5 mL/kg/
hour for 6-12 hours
b. Stage 2: Increase in serum creati-
nine to 2.0-2.9 times baseline, or urine 
output <0.5 mL/kg/hour for ≥12 hours
c. Stage 3: Increase in serum creatinine 
to ≥3.0 times baseline, or serum cre-
atinine ≥4.0 mg/dL (≥353.6 µmol/L), 
or the initiation of renal replacement 
therapy, or urine output <0.3 mL/kg/
hour for ≥24 hours or anuria for ≥12 
hours

Despite the successful  implementation of the 
2012 KDIGO cri teria for  AKI,  there are l im-
itations. These criteria do li t t le to specify the 
underlying cause of AKI, which is crucial for tai-
lored diagnosis and treatment. Reliance on serum 
creatinine has drawbacks as it can be affected by 
non-renal diseases (7), indicates kidney function 
decline late, and may lead to underestimating the 
impact of AKI on systemic diseases (8). Addi-
tionally, oliguria, an early indicator of AKI, is 
less easily studied (9).

H O W  D O  K I D N E Y S  A N D 
L U N G S  C O M M U N I C AT E ?
 
The phys io logica l  pH is  mainta ined by the 
interaction between the respiratory and renal 
physiology, leading to an acid-base balance (10). 
This depends on the synergy between the lungs 
and kidneys, such that if one organ is affected, 
the other will have to compensate (11). On the 
other hand, the control of systolic and diastolic 
pressure and volume homeostasis are delicately 
regulated through the renin-angiotensin-aldo-
sterone system (RAAS). Lungs and kidneys are 
interconnected as agents released from one dam-
aged organ affect the other.
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Hypoxemia often results in injury to the kidneys 
due to their high oxygen consumption, which in 
turn causes further impairment of renal vasodil-
atory response to hypoxia.  Hypoxemia decreases 
Renal Blood Flow (RBF) by stimulating adren-
ergic nerve endings and disturbing nitric oxide 
metabolism (12). On the other hand, Hypercapnia 
leads to a drop in systemic vascular resistance 
and systemic pressure due to the activation of 
hormonal pathways, volume retention including 
salt and water, and a drop in renal blood flow and 
filtration rate (GFR) (13). Those effects are often 
reversible, particularly seen after the resolution 
of CO2 retention, which proves the significance 
and effect of CO2 in regulating Renal Blood Flow 
(14).

P U L M O N A R Y  R E N A L 
S Y N D R O M E
Pulmonary-renal syndromes (PRS) are a constel-
lation of disorders characterized by a combina-
tion of rapidly progressive glomerulonephritis 
(RPGN) and diffuse alveolar hemorrhage (DAH) 
(15). The underlying pathological pattern often 
seen in PRS is vasculitis involving small vessels 
such as arterioles, venules, and often capillar-
ies (16). PRS is not a homogenous entity but is 
observed as a presentation associated with a wide 
spectrum of illnesses, including several forms of 
systemic vasculitis, both primary and secondary, 
and connective tissue diseases,  including sys-
temic lupus erythematosus (17).  Specifically, 
the term “pulmonary renal vasculitis syndrome” 
describes a subset of PRS that manifests as a 
syndrome of DAH complicating acute glomeru-
lonephritis, which often results in life-threaten-
ing systemic vasculitis necessitating urgent and 
aggressive forms of therapy (18). Prompt diagno-
sis is crucial in pulmonary renal syndromes due 
to the potential for rapid development of respi-
ratory failure and end-stage renal failure. Diag-
nostic evaluation involves radiology (chest X-ray 
and CT), bronchoscopy with broncho-alveolar 
lavage, laboratory testing (serology, urine anal-
ysis), and histology through renal or lung biopsy, 
which helps identify the underlying etiology and 
guide appropriate treatment strategies (19). The 
most effective treatment approach depends on the 
underlying disease, making individualized care 
essential. Initially, a combination of glucocorti-
coids, immunosuppression, and plasmapheresis 
is commonly employed. Supportive measures, 
including transfusions, mechanical ventilation, 
and renal replacement therapy, are provided as 
necessary (17).  Addit ionally,  broad-spectrum 
antimicrobial  treatment is  often administered 
temporarily until further investigations rule out 
infection (20).

K I D N E Y  A N D  M E C H A N I C A L 
V E N T I L AT I O N
Mechanical  venti lat ion is  the cornerstone for 
the management of a wide variety of respiratory 
diseases, including ARDS. New evidence sug-
gests that kidneys are affected by mechanical 
ventilation more than was initially discovered 
(21,22).  AKI affects 25–60% of patients with 
ARDS who are on mechanical ventilation (23). 
Thus, it  is a common and serious consequence 
of ARDS. Moreover,  when AKI develops con-
currently with ARDS, mortality rates increase 
dramatically, and in this population, shock is the 
most common cause of death (3). In fact, studies 
have demonstrated that the leading cause of mor-
tality in patients with ARDS is often multi-organ 
failure caused by sepsis or other causes rather 
than hypoxemia by itself (24). Therefore, i t  is 
crucial to understand the pathophysiology and 
explore possible strategies to decrease the risk 
of developing kidney injury during mechanical 
ventilation. 

Acute kidney injury in ARDS patients can be 
attr ibuted to three main mechanisms. First ly, 
hypercapnia and severe hypoxemia (PaO2 <40 
mmHg) negat ively  impact  renal  blood f low, 
potentially due to reduced activity of mediators 
such as angiotensin II, nitric oxide, endothelin, 
and bradykinin (25–30). However, mild hypox-
emia wasn’t found to be associated with a drop 
in renal blood flow unless associated with hyper-
capnia (31). The effect of moderate hypoxemia 
on blood flow to the kidneys remains inconclu-
sive (31,32).

Hypercapnia alone,  even without hypoxia,  is 
associated with a drop in renal blood flow to the 
kidneys (33), possibly through sympathetic ner-
vous system stimulation leading to renal artery 
vasoconstrict ion (34),  as well  as direct  vaso-
constriction of the renal artery (31). Secondly, 
mechanical  venti lat ion al ters  thoracic cavity 
pressures, resulting in decreased cardiac output 
and subsequent reduction in blood flow. Ven-
tilation, particularly when using high positive 
end-expiratory pressure (PEEP), increases intra-
thoracic pressure, leading to decreased cardiac 
preload and renal blood flow (35,36). 

Finally, the theory of biotrauma has gained trac-
tion as a potential contributor to acute kidney 
injury. This hypothesis suggests that inflamma-
tory mediators released from the lungs during 
mechanical ventilation may affect renal blood 
flow (37). Limited studies have investigated this 
hypothesis and the development of AKI.  One 
in vivo animal study demonstrated that certain 
ventilatory strategies increased renal epithelial 
cell apoptosis, with soluble FAS ligand playing 
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a role in AKI development (38). Another clinical 
study observed that locally stressful mechanical 
ventilation strategies can lead to the release of 
local and systemic cytokines, with IL-6 having 
a predominant effect on AKI development (39). 
Interestingly, both studies showed that using a 
strategy of lung-protective ventilation can lead 
to a decreased incidence of AKI (39). 

In addition to ARDS, AKI is frequently observed 
during sepsis among critically ill patients. Sepsis 
is characterized by hyperdynamic circulation, 
al tered blood flow -though not always in the 
ischemic range- and a sharp decline in GFR (40). 
The pathophysiology of septic-AKI is extremely 
complicated and includes tubular cell secretion 
of cytokines, inflammation, oxidative stress, and 
microvascular dysfunction.

When mechanical ventilation is used, several 
strategies have been proposed to decrease the 
chance of complications and improve outcomes. 
Those strategies are the mainstay in managing 
ARDS, as other interventions, including phar-
macological ones, often provide limited benefit 
and are not supported by evidence. 

The implementation of a conservative approach 
to lung management in individuals experiencing 
ARDS, provided there are no contraindications, 
leads to notably reduced ICU mortality, 28-day 
mortality, in-hospital mortality, and the occur-
rence of new non-respiratory organ failure com-
pared to conventional oxygenation therapy (41). 
The National Heart,  Lung, and Blood Institute 
(NHLBI) also supports the use of lung-protective 
strategies,  which involve maintaining plateau 
pressures below 30 cmH2O. To meet this require-
ment, tidal volumes are reduced, often resulting 
in mild hypercapnia. 

Notably, this observed respiratory acidosis can 
be independently associated with decreased lung 
injury (42). The mechanism behind the reduced 
mortality rates and lung injury associated with 
lung-protective strategies is thought to involve 
the reduction of inflammatory factors such as 
IL-6 and IL-8, which play a role in lung injury 
(39,42–44) .  However,  especial ly  in  pat ients 
facing crit ical i l lness,  concerns related to the 
negative effects of hypoxemia may take prece-
dence over those associated with hyperoxemia.

Another ventilation strategy with proven mor-
tality benefits is using higher positive end-expi-
ratory pressure (PEEP) levels to maintain open 
collapsible alveoli  and improve gas exchange 
throughout the lungs (45). High PEEP also helps 
prevent atelectrauma, defined as alveolar trauma 
resulting from repeated collapse and reopening.

K I D N E Y S  A N D  E X T R A C O R -
P O R E A L  M E M B R A N O U S 
O X Y G E N AT I O N
Extracorporeal membrane oxygenation (ECMO) 
is a temporary intervention deployed in cardiac 
and respiratory fai lure incidents  as  a  br idge 
to more defini t ive therapy (46).  Venoarterial 
(VA) ECMO is  used mainly for  pure cardiac 
or  mixed cardiac  and respiratory fa i lure .  In 
contrast ,  venovenous (VV) ECMO is used for 
isolated respiratory failure with intact or ade-
quate cardiac function (47). AKI observed while 
using ECMO is often attributed to multivariable 
causes, including sepsis, high intravascular pres-
sure,  interruption of normal renal blood flow, 
and increased extravascular lung edema with 
impaired gas exchange (48)

Pat ients  on ECMO who develop AKI requir-
ing renal  replacement therapy (RRT) showed 
a significantly increased mortal i ty rate when 
compared to non-RRT patients. They were sig-
nificantly less likely to be successfully weaned 
off ECMO. (49). Close to 50% of patients on VA 
ECMO will need RRT support at some point in 
the treatment course. Some patients’ attributes 
can be associated with a higher risk of needing 
RRT, including low albumin levels and shock 
status postoperatively. Worse outcomes, in gen-
eral, were observed for this cohort of patients, 
with about twice the duration of ECMO support 
needed and about  one-third the survival  rate 
when compared to the cohort  of  pat ients  not 
requiring RRT.  

When RRT is  needed,  evidence suggests  that 
early utilization of RRT may be associated with 
fewer complications such as volume overload and 
metabolic acidosis, and it  may promote recov-
ery from the systemic inflammatory response, 
potentially by clearance of large molecules such 
as inflammatory cytokines, especially when high 
flux filters are used. Aggressive volume manage-
ment and maintaining euvolemia remain crucial 
to successful outcomes after ECMO (49,50).
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