Acute Kidney Injury in ARDS: Insights into Physiology and Pathology
DOI:
https://doi.org/10.58877/japaj.v2i1.111Abstract
Abstract: Acute kidney injury is a common problem in the critically ill patient. It is often part of the multi system organ failure syndrome where other organs such as the lungs are involved. In the critically ill patient, primary pathology in one organ can affect other organs, and systemic illness can affect both at the same time. In this review article, we closely examine the definition and stages of dysfunction in lungs and kidneys and the relationship between the physiology and pathology of these two organs as they interact and affect each other in the critically ill patient. We also seek to understand the effects common intensive care units interventions have on both those organs, with a special emphasis on external life support devices such as mechanical ventilation, dialysis and extracorporeal membranous oxygenation.
References
Ashbaugh DavidG, Boyd Bigelow D, Petty ThomasL, Levine BernardE. ACUTE RESPIRATORY DISTRESS IN ADULTS. The Lancet. 1967 Aug;290(7511):319–23. DOI: https://doi.org/10.1016/S0140-6736(67)90168-7
Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA [Internet]. 2012 Jun 20 [cited 2023 Jul 19];307(23). Available from: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2012.5669 DOI: https://doi.org/10.1001/jama.2012.5669
Liu KD, Matthay MA. Advances in critical care for the nephrologist: acute lung injury/ARDS. Clin J Am Soc Nephrol CJASN. 2008 Mar;3(2):578–86. DOI: https://doi.org/10.2215/CJN.01630407
Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31. DOI: https://doi.org/10.1186/cc5713
Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, the ADQI workgroup. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004 May 24;8(4):R204.
Kellum JA, Lameire N, for the KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013 Feb 4;17(1):204. DOI: https://doi.org/10.1186/cc11454
Caregaro L. Limitations of Serum Creatinine Level and Creatinine Clearance as Filtration Markers in Cirrhosis. Arch Intern Med. 1994 Jan 24;154(2):201. DOI: https://doi.org/10.1001/archinte.1994.00420020117013
Lin J, Fernandez H, Shashaty MGS, Negoianu D, Testani JM, Berns JS, et al. False-Positive Rate of AKI Using Consensus Creatinine–Based Criteria. Clin J Am Soc Nephrol. 2015 Oct;10(10):1723–31. DOI: https://doi.org/10.2215/CJN.02430315
Macedo E, Malhotra R, Bouchard J, Wynn SK, Mehta RL. Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int. 2011 Oct 1;80(7):760–7. DOI: https://doi.org/10.1038/ki.2011.150
Bollenbecker S, Czaya B, Gutiérrez OM, Krick S. Lung-kidney interactions and their role in chronic kidney disease-associated pulmonary diseases. Am J Physiol-Lung Cell Mol Physiol. 2022 May 1;322(5):L625–40. DOI: https://doi.org/10.1152/ajplung.00152.2021
Satta E, Alfarone C, De Maio A, Gentile S, Romano C, Polverino M, et al. Kidney and lung in pathology: mechanisms and clinical implications. Multidiscip Respir Med [Internet]. 2022 Jan 18 [cited 2023 Jul 21];17. Available from: https://mrmjournal.org/mrm/article/view/819 DOI: https://doi.org/10.4081/mrm.2022.819
Husain-Syed F, Slutsky AS, Ronco C. Lung–Kidney Cross-Talk in the Critically Ill Patient. Am J Respir Crit Care Med. 2016 Aug 15;194(4):402–14. DOI: https://doi.org/10.1164/rccm.201602-0420CP
Husain-Syed F, McCullough PA, Birk HW, Renker M, Brocca A, Seeger W, et al. Cardio-Pulmonary-Renal Interactions. J Am Coll Cardiol. 2015 Jun;65(22):2433–48. DOI: https://doi.org/10.1016/j.jacc.2015.04.024
Hemlin M, Ljungman S, Carlson J, Maljukanovic S, Mobini R, Bech-Hanssen O, et al. The effects of hypoxia and hypercapnia on renal and heart function, haemodynamics and plasma hormone levels in stable COPD patients. Clin Respir J. 2007 Dec;1(2):80–90. DOI: https://doi.org/10.1111/j.1752-699X.2007.00031.x
West SC, Arulkumaran N, Ind PW, Pusey CD. Pulmonary-renal syndrome: a life threatening but treatable condition. Postgrad Med J. 2013 May 1;89(1051):274–83. DOI: https://doi.org/10.1136/postgradmedj-2012-131416
Papiris SA, Manali ED, Kalomenidis I, Kapotsis GE, Karakatsani A, Roussos C. Bench-to-bedside review: Pulmonary–renal syndromes – an update for the intensivist. Crit Care. 2007;11(3):213. DOI: https://doi.org/10.1186/cc5778
Brusselle GG. PULMONARY-RENAL SYNDROMES. Acta Clin Belg. 2007 Apr;62(2):88–96. DOI: https://doi.org/10.1179/acb.2007.016
Lee RW, D’Cruz DP. Pulmonary renal vasculitis syndromes. Autoimmun Rev. 2010 Aug;9(10):657–60. DOI: https://doi.org/10.1016/j.autrev.2010.05.012
Boyle N, O’Callaghan M, Ataya A, Gupta N, Keane MP, Murphy DJ, et al. Pulmonary renal syndrome: a clinical review. Breathe. 2022 Dec;18(4):220208. DOI: https://doi.org/10.1183/20734735.0208-2022
Cervera R, Bucciarelli S, Plasín MA, Gómez-Puerta JA, Plaza J, Pons-Estel G, et al. Catastrophic antiphospholipid syndrome (CAPS): Descriptive analysis of a series of 280 patients from the “CAPS Registry.” J Autoimmun. 2009 May;32(3–4):240–5. DOI: https://doi.org/10.1016/j.jaut.2009.02.008
Kuiper JW, Groeneveld ABJ, Slutsky AS, Plötz FB. Mechanical ventilation and acute renal failure. Crit Care Med. 2005 Jun;33(6):1408–15. DOI: https://doi.org/10.1097/01.CCM.0000165808.30416.EF
Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress Syndrome. N Engl J Med. 1998 Feb 5;338(6):347–54. DOI: https://doi.org/10.1056/NEJM199802053380602
Doyle RL, Szaflarski N, Modin GW, Wiener-Kronish JP, Matthay MA. Identification of patients with acute lung injury. Predictors of mortality. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):1818–24. DOI: https://doi.org/10.1164/ajrccm.152.6.8520742
Anderson RJ, Pluss RG, Berns AS, Jackson JT, Arnold PE, Schrier RW, et al. Mechanism of Effect of Hypoxia on Renal Water Excretion. J Clin Invest. 1978 Oct 1;62(4):769–77. DOI: https://doi.org/10.1172/JCI109188
Bruns FJ. Decrease in Renal Perfusion, Glomerular Filtration and Sodium Excretion by Hypoxia in the Dog. Exp Biol Med. 1978 Dec 1;159(3):468–72. DOI: https://doi.org/10.3181/00379727-159-40372
Howes TQ, Keilty SE, Maskrey VL, Deane CR, Baudouin SV, Moxham J. Effect of L-arginine on renal blood flow in normal subjects and patients with hypoxic chronic obstructive pulmonary disease. Thorax. 1996 May 1;51(5):516–9. DOI: https://doi.org/10.1136/thx.51.5.516
Huet F, Semama DS, Gouyon JB, Guignard JP. Protective Effect of Perindoprilat in the Hypoxemia-Induced Renal Dysfunction in the Newborn Rabbit. Pediatr Res. 1999 Jan;45(1):138–42. DOI: https://doi.org/10.1203/00006450-199901000-00023
Semama DS, Thonney M, Guignard JP. Does Endothelin-1 Mediate the Hypoxemia-lnduced Renal Dysfunction in Newborn Rabbits? Neonatology. 1995;67(3):216–22. DOI: https://doi.org/10.1159/000244167
Tóth-Heyn P, Thonney Viani M, Guignard JP. Bradykinin and hypoxemia-induced renal changes in the newborn rabbit. Pediatr Nephrol. 1998 Jun 25;12(5):377–80. DOI: https://doi.org/10.1007/s004670050469
Kilburn KH, Dowell AR. Renal function in respiratory failure. Effects of hypoxia, hyperoxia, and hypercapnia. Arch Intern Med. 1971 Apr;127(4):754–62. DOI: https://doi.org/10.1001/archinte.127.4.754
Baudouin SV, Bott J, Ward A, Deane C, Moxham J. Short term effect of oxygen on renal haemodynamics in patients with hypoxaemic chronic obstructive airways disease. Thorax. 1992 Jul 1;47(7):550–4. DOI: https://doi.org/10.1136/thx.47.7.550
Sharkey R, Mulloy E, O’Neill S. Acute effects of hypoxaemia, hyperoxaemia and hypercapnia on renal blood flow in normal and renal transplant subjects. Eur Respir J. 1998 Sep 1;12(3):653–7. DOI: https://doi.org/10.1183/09031936.98.12030653
Anand IS, Ferrari R, Kalra GS, Wahi PL, Poole-Wilson PA, Harris PC. Edema of cardiac origin. Studies of body water and sodium, renal function, hemodynamic indexes, and plasma hormones in untreated congestive cardiac failure. Circulation. 1989 Aug;80(2):299–305. DOI: https://doi.org/10.1161/01.CIR.80.2.299
Fewell JE, Abendschein DR, Carlson CJ, Murray JF, Rapaport E. Continuous positive-pressure ventilation decreases right and left ventricular end-diastolic volumes in the dog. Circ Res. 1980 Jan;46(1):125–32. DOI: https://doi.org/10.1161/01.RES.46.1.125
Luecke T, Roth H, Herrmann P, Joachim A, Weisser G, Pelosi P, et al. Assessment of cardiac preload and left ventricular function under increasing levels of positive end-expiratory pressure. Intensive Care Med. 2004 Jan;30(1):119–26. DOI: https://doi.org/10.1007/s00134-003-1993-7
Plötz FB, Slutsky AS, Van Vught AJ, Heijnen CJ. Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypotheses. Intensive Care Med. 2004 Oct;30(10):1865–72. DOI: https://doi.org/10.1007/s00134-004-2363-9
Imai Y. Injurious Mechanical Ventilation and End-Organ Epithelial Cell Apoptosis and Organ Dysfunction in an Experimental Model of Acute Respiratory Distress Syndrome. JAMA. 2003 Apr 23;289(16):2104. DOI: https://doi.org/10.1001/jama.289.16.2104
Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, et al. Effect of Mechanical Ventilation on Inflammatory Mediators in Patients With Acute Respiratory Distress Syndrome: A Randomized Controlled Trial. JAMA. 1999 Jul 7;282(1):54. DOI: https://doi.org/10.1001/jama.282.1.54
Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syndrome. N Engl J Med. 2004 Jul 22;351(4):327–36. DOI: https://doi.org/10.1056/NEJMoa032193
Broccard AF, Hotchkiss JR, Vannay C, Markert M, Sauty A, Feihl F, et al. Protective Effects of Hypercapnic Acidosis on Ventilator-induced Lung Injury. Am J Respir Crit Care Med. 2001 Sep 1;164(5):802–6. DOI: https://doi.org/10.1164/ajrccm.164.5.2007060
Parsons PE, Eisner MD, Thompson BT, Matthay MA, Ancukiewicz M, Bernard GR, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005 Jan;33(1):1–6. DOI: https://doi.org/10.1097/01.CCM.0000149854.61192.DC
Papadakos PJ, Lachmann B. The open lung concept of mechanical ventilation: the role of recruitment and stabilization. Crit Care Clin. 2007 Apr;23(2):241–50, ix–x. DOI: https://doi.org/10.1016/j.ccc.2006.12.001
Chen YC, Tsai FC, Chang CH, Lin CY, Jenq CC, Juan KC, et al. Prognosis of Patients on Extracorporeal Membrane Oxygenation: The Impact of Acute Kidney Injury on Mortality. Ann Thorac Surg. 2011 Jan;91(1):137–42. DOI: https://doi.org/10.1016/j.athoracsur.2010.08.063
Chen YC, Tsai FC, Fang JT, Yang CW. Acute kidney injury in adults receiving extracorporeal membrane oxygenation. J Formos Med Assoc. 2014 Nov;113(11):778–85. DOI: https://doi.org/10.1016/j.jfma.2014.04.006
Husain-Syed F, Ricci Z, Brodie D, Vincent JL, Ranieri VM, Slutsky AS, et al. Extracorporeal organ support (ECOS) in critical illness and acute kidney injury: from native to artificial organ crosstalk. Intensive Care Med. 2018 Sep;44(9):1447–59. DOI: https://doi.org/10.1007/s00134-018-5329-z
Lumlertgul N, Wright R, Hutson G, Milicevic JK, Vlachopanos G, Lee KCH, et al. Long-term outcomes in patients who received veno-venous extracorporeal membrane oxygenation and renal replacement therapy: a retrospective cohort study. Ann Intensive Care. 2022 Dec;12(1):70. DOI: https://doi.org/10.1186/s13613-022-01046-0
Worku B, Khin S, Gaudino M, Gambardella I, Iannacone E, Ebrahimi H, et al. Renal replacement therapy in patients on extracorporeal membrane oxygenation support: Who and how. Int J Artif Organs. 2021 Aug;44(8):531–8. DOI: https://doi.org/10.1177/0391398820980451
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 JAP Academy Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.