Use of Inotropes and vasopressors in Septic Shock: When, Why, and How?
DOI:
https://doi.org/10.58877/japaj.v2i1.115Abstract
Septic shock, a severe and sometimes fatal condition caused by systemic infection, demands immediate and focused therapies to restore hemodynamic stability and prevent organ failure. The use of vasopressors and inotropes has become the foundation in the treatment of septic shock, with the goal of reversing the vasodilatory condition and increasing cardiac contractility.
Vasopressors are an effective class of medications that cause vasoconstriction and hence increase mean arterial pressure (MAP). Norepinephrine is recommended as the first-line agent to use in septic shock. However, many medications have both vasopressor and inotropic actions, distinguishing them from inotropes, which increase heart contractility.
Inotropes work by increasing cardiac contractility and thereby increasing cardiac output. Dobutamine is still the mainstay of treatment based on the latest SCCM guidelines.
This review provides a comprehensive overview of the rationale, indications, doses and major side effects surrounding the administration of these pharmacological agents in septic shock.
Our team extensively explored various databases regarding this subject. We concluded that the most trustworthy sources for our study were articles indexed in PubMed. We thoroughly examined these articles and synthesized the information within our review.
We recommend that more trials are needed to compare the effectivity of dobutamine compared to other inotropes in the setting of septic shock as the latest guidelines are based on a shortage of randomized control trials. Also the literature should emphasize the importance of continuous hemodynamic monitoring during vasopressor therapy, highlighting the necessity for personalized changes to reach and maintain target blood pressure targets.
References
Ameloot, K., Jakkula, P., Hästbacka, J., Reinikainen, M., Pettilä, V., Loisa, P., Tiainen, M., Bendel, S., Birkelund, T., Belmans, A., Palmers, P. J., Bogaerts, E., Lemmens, R., De Deyne, C., Ferdinande, B., Dupont, M., Janssens, S., Dens, J., & Skrifvars, M. B. (2020). Optimum Blood Pressure in Patients With Shock After Acute Myocardial Infarction and Cardiac Arrest. Journal of the American College of Cardiology, 76(7), 812–824. https://doi.org/10.1016/J.JACC.2020.06.043 DOI: https://doi.org/10.1016/j.jacc.2020.06.043
Asfar, P., Meziani, F., Hamel, J.-F., Grelon, F., Megarbane, B., Anguel, N., Mira, J.-P., Dequin, P.-F., Gergaud, S., Weiss, N., Legay, F., Le Tulzo, Y., Conrad, M., Robert, R., Gonzalez, F., Guitton, C., Tamion, F., Tonnelier, J.-M., Guezennec, P., … Radermacher, P. (2014). High versus Low Blood-Pressure Target in Patients with Septic Shock. New England Journal of Medicine. https://doi.org/10.1056/nejmoa1312173 DOI: https://doi.org/10.1056/NEJMoa1312173
Ashkar H, Adnan G, Makaryus AN. Dobutamine. [Updated 2023 Jan 19]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470431/
Ayres JK, Maani CV. Milrinone. [Updated 2022 Sep 6]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532943/
Bauer, M., Gerlach, H., Vogelmann, T., Preissing, F., Stiefel, J., & Adam, D. (2020). Mortality in sepsis and septic shock in Europe , North America and Australia between 2009 and 2019 — results from a systematic review and meta-analysis. 1–9. https://doi.org/https://doi.org/10.1186/s13054-020-02950-2 DOI: https://doi.org/10.1186/s13054-020-02950-2
Bickell, W. H., Wall, M. J., Pepe, P. E., Martin, R. R., Ginger, V. F., Allen, M. K., & Mattox, K. L. (1994). Immediate versus Delayed Fluid Resuscitation for Hypotensive Patients with Penetrating Torso Injuries. New England Journal of Medicine. https://doi.org/10.1056/nejm199410273311701 DOI: https://doi.org/10.1056/NEJM199410273311701
Carlson, D. L., Willis, M. S., White, D. J., Norton, J. W., & Giroir, B. P. (2005). Tumor necrosis factor-alpha-induced caspase activation mediates endotoxin-related cardiac dysfunction. Critical Care Medicine, 33(5), 1021–1028. https://doi.org/10.1097/01.CCM.0000163398.79679.66 DOI: https://doi.org/10.1097/01.CCM.0000163398.79679.66
Cecconi, M., De Backer, D., Antonelli, M., Beale, R., Bakker, J., Hofer, C., Jaeschke, R., Mebazaa, A., Pinsky, M. R., Teboul, J. L., Vincent, J. L., & Rhodes, A. (2014). Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Medicine, 40(12), 1795–1815. https://doi.org/10.1007/S00134-014-3525-Z DOI: https://doi.org/10.1007/s00134-014-3525-z
De Werra, I., Jaccard, C., Corradin, S. B., Chioléro, R., Yersin, B., Gallati, H., Assicot, M., Bohuon, C., Baumgartner, J. D., Glauser, M. P., & Heumann, D. (1997). Cytokines, nitrite/nitrate, soluble tumor necrosis factor receptors, and procalcitonin concentrations: comparisons in patients with septic shock, cardiogenic shock, and bacterial pneumonia. Critical Care Medicine, 25(4), 607–613. https://doi.org/10.1097/00003246-199704000-00009 DOI: https://doi.org/10.1097/00003246-199704000-00009
Geppert, A., Steiner, A., Zorn, G., Delle-Karth, G., Koreny, M., Haumer, M., Siostrzonek, P., Huber, K., & Heinz, G. (2002). Multiple organ failure in patients with cardiogenic shock is associated with high plasma levels of interleukin-6. Critical Care Medicine, 30(9), 1987–1994. https://doi.org/10.1097/00003246-200209000-00007 DOI: https://doi.org/10.1097/00003246-200209000-00007
Harjola, V. P., Lassus, J., Sionis, A., Køber, L., Tarvasmäki, T., Spinar, J., Parissis, J., Banaszewski, M., Silva-Cardoso, J., Carubelli, V., Di Somma, S., Tolppanen, H., Zeymer, U., Thiele, H., Nieminen, M. S., & Mebazaa, A. (2015). Clinical picture and risk prediction of short-term mortality in cardiogenic shock. European Journal of Heart Failure, 17(5), 501–509. https://doi.org/10.1002/EJHF.260 DOI: https://doi.org/10.1002/ejhf.260
Kacimi, R., Long, C. S., & Karliner, J. S. (1997). Chronic Hypoxia Modulates the Interleukin-1β–Stimulated Inducible Nitric Oxide Synthase Pathway in Cardiac Myocytes. Circulation, 96(6), 1937–1943. https://doi.org/10.1161/01.CIR.96.6.1937 DOI: https://doi.org/10.1161/01.CIR.96.6.1937
Kuhota, T., McTiernan, C. F., Frye, C. S., Slawson, S. E., Lemster, B. H., Koretsky, A. P., Demetris, A. J., & Feldman, A. M. (1997). Dilated Cardiomyopathy in Transgenic Mice With Cardiac-Specific Overexpression of Tumor Necrosis Factor-α. Circulation Research, 81(4), 627–635. https://doi.org/10.1161/01.RES.81.4.627 DOI: https://doi.org/10.1161/01.RES.81.4.627
Lu, S., Aguilar, A., Subramani, K., Poulose, N., Ayub, A., & Raju, R. (2016). Alteration of cytokine profile following hemorrhagic shock. Cytokine, 81, 35–38. https://doi.org/10.1016/J.CYTO.2016.01.022 DOI: https://doi.org/10.1016/j.cyto.2016.01.022
Marik, P. E., & Weinmann, M. (2019). Optimizing fluid therapy in shock. 25(3), 246–251. https://doi.org/10.1097/MCC.0000000000000604 DOI: https://doi.org/10.1097/MCC.0000000000000604
Pich, H., & Heller, A. R. (2015). [Obstructive shock]. Der Anaesthesist, 64(5), 403–419. https://doi.org/10.1007/S00101-015-0031-9 DOI: https://doi.org/10.1007/s00101-015-0031-9
Rhodes, A., Evans, L. E., Alhazzani, W., Levy, M. M., Antonelli, M., Ferrer, R., Kumar, A., Sevransky, J. E., Sprung, C. L., Nunnally, M. E., Rochwerg, B., Rubenfeld, G. D., Angus, D. C., Annane, D., Beale, R. J., Bellinghan, G. J., Bernard, G. R., Chiche, J. D., Coopersmith, C., … Dellinger, R. P. (2017). Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Medicine. https://doi.org/10.1007/s00134-017-4683-6
Standl, T., Annecke, T., Cascorbi, I., Heller, A. R., Sabashnikov, A., & Teske, W. (2018). The Nomenclature , Definition and Distinction of Types of Shock. https://doi.org/10.3238/arztebl.2018.0757 DOI: https://doi.org/10.3238/arztebl.2018.0757
Patel, S., Holden, K., Calvin, B., DiSilvio, B., & Dumont, T. (2022). Shock. Critical Care Nursing Quarterly, 45(3), 225–232. https://doi.org/10.1097/CNQ.0000000000000407 DOI: https://doi.org/10.1097/CNQ.0000000000000407
a. Overgaard, C. B., & Dzavík, V. (2008). Inotropes and vasopressors: review of physiology and clinical use in cardiovascular disease. Circulation, 118(10), 1047–1056. https://doi.org/10.1161/CIRCULATIONAHA.107.728840 DOI: https://doi.org/10.1161/CIRCULATIONAHA.107.728840
Shi, R., Hamzaoui, O., De Vita, N., Monnet, X., & Teboul, J. L. (2020). Vasopressors in septic shock: which, when, and how much?. Annals of translational medicine, 8(12), 794. https://doi.org/10.21037/atm.2020.04.24 DOI: https://doi.org/10.21037/atm.2020.04.24
Belletti, A., Nagy, A., Sartorelli, M., Mucchetti, M., Putzu, A., Sartini, C., Morselli, F., De Domenico, P., Zangrillo, A., Landoni, G., & Lembo, R. (2020). Effect of Continuous Epinephrine Infusion on Survival in Critically Ill Patients: A Meta-Analysis of Randomized Trials. Critical care medicine, 48(3), 398–405. https://doi.org/10.1097/CCM.0000000000004127 DOI: https://doi.org/10.1097/CCM.0000000000004127
Rhodes, A., Evans, L. E., Alhazzani, W., Levy, M. M., Antonelli, M., Ferrer, R., Kumar, A., Sevransky, J. E., Sprung, C. L., Nunnally, M. E., Rochwerg, B., Rubenfeld, G. D., Angus, D. C., Annane, D., Beale, R. J., Bellinghan, G. J., Bernard, G. R., Chiche, J. D., Coopersmith, C., De Backer, D. P., … Dellinger, R. P. (2017). Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive care medicine, 43(3), 304–377. https://doi.org/10.1007/s00134-017-4683-6 DOI: https://doi.org/10.1007/s00134-017-4683-6
Khanna, A., English, S. W., Wang, X. S., Ham, K., Tumlin, J., Szerlip, H., Busse, L. W., Altaweel, L., Albertson, T. E., Mackey, C., McCurdy, M. T., Boldt, D. W., Chock, S., Young, P. J., Krell, K., Wunderink, R. G., Ostermann, M., Murugan, R., Gong, M. N., Panwar, R., … ATHOS-3 Investigators (2017). Angiotensin II for the Treatment of Vasodilatory Shock. The New England journal of medicine, 377(5), 419–430. https://doi.org/10.1056/NEJMoa1704154 DOI: https://doi.org/10.1056/NEJMoa1704154
Van Tassell, B. W., Seropian, I. M., Toldo, S., Mezzaroma, E., & Abbate, A. (2013). Interleukin-1β induces a reversible cardiomyopathy in the mouse. Inflammation Research, 62(7), 637–640. https://doi.org/10.1007/S00011-013-0625-0/METRICS DOI: https://doi.org/10.1007/s00011-013-0625-0
Zhang, C. (2008). The role of inflammatory cytokines in endothelial dysfunction. Basic Research in Cardiology, 103(5), 398. https://doi.org/10.1007/S00395-008-0733-0 DOI: https://doi.org/10.1007/s00395-008-0733-0
Zhang, C., Hein, T. W., Wang, W., Ren, Y., Shipley, R. D., & Kuo, L. (2006). Activation of JNK and xanthine oxidase by TNF-alpha impairs nitric oxide-mediated dilation of coronary arterioles. Journal of Molecular and Cellular Cardiology, 40(2), 247–257. https://doi.org/10.1016/J.YJMCC.2005.11.010 DOI: https://doi.org/10.1016/j.yjmcc.2005.11.010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 JAPA Academy Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.