Utilizing Point of Care Ultrasound for Ventilation Liberation: A State-of-the-Art Narrative Review

Authors

  • Haneen Mallah University of Florida
  • Ahmad AL-Tanjy University of Jordan
  • Muhannad Mahmoud University of Jordan
  • Lina Alkhdour University of Jordan
  • Leen Amro University of Jordan
  • Abdallah Alshurafa University of Jordan
  • Mu’taz Alshaikh Hasan Al Bashir Hospital
  • Bashar Alzghoul University of Florida

DOI:

https://doi.org/10.58877/japaj.v2i1.120

Keywords:

Lung ultrasound, Point of care ultrasound, ventilator liberation, weaning, extubation, positive end-expiratory pressure, recruitment, atelectasis, diaphragmatic thickening fraction, diaphragmatic excursion

Abstract

Mechanical ventilation (MV) is an essential aspect of critical care for patients with acute respiratory failure, but prolonged MV can lead to various complications. Ultrasound (US) is becoming widely available and simple to use, and more people are getting trained to use it. It offers real-time radiation-free assessment of lung aeration, diaphragmatic, and cardiac function. This review explores the role of point-of-care ultrasound (POCUS) in enhancing decision-making and patient care during the weaning and liberation process from MV. Lung US aids in diagnosing lung and pleural pathologies, thereby optimizing ventilator settings and lung recruitment, while diaphragmatic ultrasound provides valuable insights into diaphragmatic atrophy and readiness for extubation. Cardiac function evaluation helps in optimizing hemodynamics that may affect weaning. Despite its advantages, it is crucial to realize that POCUS has limitations, and standardized protocols are still lacking. In conclusion, POCUS holds promise in improving the weaning process and patient care in the context of MV liberation, complementing existing weaning protocols.

References

Schmidt GA, Girard TD, Kress JP, Morris PE, Ouellette DR, Alhazzani W, et al. Official Executive Summary of an American Thoracic Society/American College of Chest Physicians Clinical Practice Guideline: Liberation from Mechanical Ventilation in Critically Ill Adults. Am J Respir Crit Care Med. 2017;195(1):115-9. DOI: https://doi.org/10.1164/rccm.201610-2076ST

Vahedian-Azimi A, Bashar FR, Jafarabadi MA, Stahl J, Miller AC, Collaborative M. Protocolized ventilator weaning verses usual care: A randomized controlled trial. Int J Crit Illn Inj Sci. 2020;10(4):206-12. DOI: https://doi.org/10.4103/IJCIIS.IJCIIS_29_20

Parada-Gereda HM TA, Rico-Mendoza A, Molano-Franco D, Nieto VH, Arias-Ortiz WA, et al. Effectiveness of diaphragmatic ultrasound as a predictor of successful weaning from mechanical ventilation: a systematic review and meta-analysis. Crit Care. 2023;27(1):174. DOI: https://doi.org/10.1186/s13054-023-04430-9

Rajbanshi LK, Bajracharya A, Devkota D. Prediction of Successful Spontaneous Breathing Trial and Extubation of Trachea by Lung Ultrasound in Mechanically Ventilated Patients in Intensive Care Unit. Indian J Crit Care Med. 2023;27(7):482-7. DOI: https://doi.org/10.5005/jp-journals-10071-24487

Saraogi A. Lung ultrasound: Present and future. Lung India. 2015;32(3):250-7. DOI: https://doi.org/10.4103/0970-2113.156245

Bouhemad B, Liu ZH, Arbelot C, Zhang M, Ferarri F, Le-Guen M, et al. Ultrasound assessment of antibiotic-induced pulmonary reaeration in ventilator-associated pneumonia. Crit Care Med. 2010;38(1):84-92. DOI: https://doi.org/10.1097/CCM.0b013e3181b08cdb

Dres M, Roux D, Pham T, Beurton A, Ricard JD, Fartoukh M, et al. Prevalence and Impact on Weaning of Pleural Effusion at the Time of Liberation from Mechanical Ventilation: A Multicenter Prospective Observational Study. Anesthesiology. 2017;126(6):1107-15. DOI: https://doi.org/10.1097/ALN.0000000000001621

Li S, Chen Z, Yan W. Application of bedside ultrasound in predicting the outcome of weaning from mechanical ventilation in elderly patients. BMC Pulm Med. 2021;21(1):217. DOI: https://doi.org/10.1186/s12890-021-01605-4

Chiumello D, Mongodi S, Algieri I, Vergani GL, Orlando A, Via G, et al. Assessment of Lung Aeration and Recruitment by CT Scan and Ultrasound in Acute Respiratory Distress Syndrome Patients. Crit Care Med. 2018;46(11):1761-8. DOI: https://doi.org/10.1097/CCM.0000000000003340

Soummer A, Perbet S, Brisson H, Arbelot C, Constantin JM, Lu Q, et al. Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress*. Crit Care Med. 2012;40(7):2064-72. DOI: https://doi.org/10.1097/CCM.0b013e31824e68ae

Osman AM HR. Diaphragmatic and lung ultrasound application as new predictive indices for the weaning process in ICU patients. Egypt J Radiol Nucl Med. 2017(48):61–6. DOI: https://doi.org/10.1016/j.ejrnm.2017.01.005

Mayo P, Volpicelli G, Lerolle N, Schreiber A, Doelken P, Vieillard-Baron A. Ultrasonography evaluation during the weaning process: the heart, the diaphragm, the pleura and the lung. Intensive Care Med. 2016;42(7):1107-17. DOI: https://doi.org/10.1007/s00134-016-4245-3

Tusman G, Acosta CM, Costantini M. Ultrasonography for the assessment of lung recruitment maneuvers. Crit Ultrasound J. 2016;8(1):8. DOI: https://doi.org/10.1186/s13089-016-0045-9

Tusman G, Bohm SH. Prevention and reversal of lung collapse during the intra-operative period. Best Pract Res Clin Anaesthesiol. 2010;24(2):183-97. DOI: https://doi.org/10.1016/j.bpa.2010.02.006

Glau CL, Conlon TW, Himebauch AS, Yehya N, Weiss SL, Berg RA, et al. Progressive Diaphragm Atrophy in Pediatric Acute Respiratory Failure. Pediatr Crit Care Med. 2018;19(5):406-11. DOI: https://doi.org/10.1097/PCC.0000000000001485

Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D, et al. Evolution of Diaphragm Thickness during Mechanical Ventilation. Impact of Inspiratory Effort. Am J Respir Crit Care Med. 2015;192(9):1080-8. DOI: https://doi.org/10.1164/rccm.201503-0620OC

García-Sánchez A BE, Pintado B, et al. Disfunción diafragmática evaluada por ecografía como predictora del fracaso de la extubación: Revisión sistemática y metanálisis. Open Respir Arch. 2020;2(4):267-77. DOI: https://doi.org/10.1016/j.opresp.2020.09.005

Le Neindre A, Philippart F, Luperto M, Wormser J, Morel-Sapene J, Aho SL, et al. Diagnostic accuracy of diaphragm ultrasound to predict weaning outcome: A systematic review and meta-analysis. Int J Nurs Stud. 2021;117:103890. DOI: https://doi.org/10.1016/j.ijnurstu.2021.103890

Llamas-Alvarez AM, Tenza-Lozano EM, Latour-Perez J. Diaphragm and Lung Ultrasound to Predict Weaning Outcome: Systematic Review and Meta-Analysis. Chest. 2017;152(6):1140-50. DOI: https://doi.org/10.1016/j.chest.2017.08.028

Saravanan R, Nivedita K, Karthik K, Venkatraman R. Role of diaphragm ultrasound in weaning mechanically ventilated patients: A prospective observational study. Indian J Anaesth. 2022;66(8):591-8. DOI: https://doi.org/10.4103/ija.ija_229_22

Pirompanich P, Romsaiyut S. Use of diaphragm thickening fraction combined with rapid shallow breathing index for predicting success of weaning from mechanical ventilator in medical patients. J Intensive Care. 2018;6:6. DOI: https://doi.org/10.1186/s40560-018-0277-9

Song J, Qian Z, Zhang H, Wang M, Yu Y, Ye C, et al. Diaphragmatic ultrasonography-based rapid shallow breathing index for predicting weaning outcome during a pressure support ventilation spontaneous breathing trial. BMC Pulm Med. 2022;22(1):337. DOI: https://doi.org/10.1186/s12890-022-02133-5

Eksombatchai D, Sukkratok C, Sutherasan Y, Junhasavasdikul D, Theerawit P. The ratio of respiratory rate to diaphragm thickening fraction for predicting extubation success. BMC Pulm Med. 2023;23(1):109. DOI: https://doi.org/10.1186/s12890-023-02392-w

Fossat G, Daillet B, Desmalles E, Boulain T. Does diaphragm ultrasound improve the rapid shallow breathing index accuracy for predicting the success of weaning from mechanical ventilation? Aust Crit Care. 2022;35(3):233-40. DOI: https://doi.org/10.1016/j.aucc.2021.05.008

Vetrugno L, Orso D, Corradi F, Zani G, Spadaro S, Meroi F, et al. Diaphragm ultrasound evaluation during weaning from mechanical ventilation in COVID-19 patients: a pragmatic, cross-section, multicenter study. Respir Res. 2022;23(1):210. DOI: https://doi.org/10.1186/s12931-022-02138-y

Umbrello M, Formenti P, Longhi D, Galimberti A, Piva I, Pezzi A, et al. Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Crit Care. 2015;19(1):161. DOI: https://doi.org/10.1186/s13054-015-0894-9

Shi ZH, Jonkman A, de Vries H, Jansen D, Ottenheijm C, Girbes A, et al. Expiratory muscle dysfunction in critically ill patients: towards improved understanding. Intensive Care Med. 2019;45(8):1061-71. DOI: https://doi.org/10.1007/s00134-019-05664-4

Vivier E, Muller M, Putegnat JB, Steyer J, Barrau S, Boissier F, et al. Inability of Diaphragm Ultrasound to Predict Extubation Failure: A Multicenter Study. Chest. 2019;155(6):1131-9. DOI: https://doi.org/10.1016/j.chest.2019.03.004

Doorduin J, van Hees HW, van der Hoeven JG, Heunks LM. Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med. 2013;187(1):20-7. DOI: https://doi.org/10.1164/rccm.201206-1117CP

Dres M, Dube BP, Goligher E, Vorona S, Demiri S, Morawiec E, et al. Usefulness of Parasternal Intercostal Muscle Ultrasound during Weaning from Mechanical Ventilation. Anesthesiology. 2020;132(5):1114-25. DOI: https://doi.org/10.1097/ALN.0000000000003191

Caille V, Amiel JB, Charron C, Belliard G, Vieillard-Baron A, Vignon P. Echocardiography: a help in the weaning process. Crit Care. 2010;14(3):R120. DOI: https://doi.org/10.1186/cc9076

Pinsky MR. Breathing as exercise: the cardiovascular response to weaning from mechanical ventilation. Intensive Care Med. 2000;26(9):1164-6. DOI: https://doi.org/10.1007/s001340000619

Lemaire F, Teboul JL, Cinotti L, Giotto G, Abrouk F, Steg G, et al. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology. 1988;69(2):171-9. DOI: https://doi.org/10.1097/00000542-198808000-00004

Moschietto S, Doyen D, Grech L, Dellamonica J, Hyvernat H, Bernardin G. Transthoracic Echocardiography with Doppler Tissue Imaging predicts weaning failure from mechanical ventilation: evolution of the left ventricle relaxation rate during a spontaneous breathing trial is the key factor in weaning outcome. Crit Care. 2012;16(3):R81. DOI: https://doi.org/10.1186/cc11339

de Meirelles Almeida CA, Nedel WL, Morais VD, Boniatti MM, de Almeida-Filho OC. Diastolic dysfunction as a predictor of weaning failure: A systematic review and meta-analysis. J Crit Care. 2016;34:135-41. DOI: https://doi.org/10.1016/j.jcrc.2016.03.007

Islam M, Levitus M, Eisen L, Shiloh AL, Fein D. Lung Ultrasound for the Diagnosis and Management of Acute Respiratory Failure. Lung. 2020;198(1):1-11. DOI: https://doi.org/10.1007/s00408-019-00309-1

Lee J. Lung ultrasound in critically ill patients. Korean Journal of Critical Care Medicine. 2016; 31(1):4. DOI: https://doi.org/10.4266/kjccm.2016.31.1.4

Colombi D, Petrini M, Maffi G, Villani GD, Bodini FC, Morelli N, et al. Comparison of admission chest computed tomography and lung ultrasound performance for diagnosis of COVID-19 pneumonia in populations with different disease prevalence. Eur J Radiol. 2020;133:109344. DOI: https://doi.org/10.1016/j.ejrad.2020.109344

Okabe Y, Asaga T, Bekku S, Suzuki H, Kanda K, Yoda T, et al. Lung-thorax compliance measured during a spontaneous breathing trial is a good index of extubation failure in the surgical intensive care unit: a retrospective cohort study. J Intensive Care. 2018;6:44. DOI: https://doi.org/10.1186/s40560-018-0313-9

Rouby JJ, Lu Q, Goldstein I. Selecting the right level of positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;165(8):1182-6. DOI: https://doi.org/10.1164/ajrccm.165.8.2105122

Downloads

Published

2024-03-26

How to Cite

Mallah, H., AL-Tanjy, A., Mahmoud, M., Alkhdour, L., Amro, L., Alshurafa, A., … Alzghoul, B. (2024). Utilizing Point of Care Ultrasound for Ventilation Liberation: A State-of-the-Art Narrative Review . JAP Academy Journal, 2(1). https://doi.org/10.58877/japaj.v2i1.120