Intensive Care Unit-Acquired Weakness in Pediatrics: A Literature Review
Pediatric ICU- Acquired weakness
DOI:
https://doi.org/10.58877/japaj.v2i1.185Keywords:
Critical illness, children, weakness, myopathy, polyneuropathy, pediatric, Pediatric Critical Care, Intensive Care UnitAbstract
Pediatric patients admitted to the intensive care unit may develop a form of muscle weakness termed Intensive Care Unit Acquired Weakness (ICU-AW), which remains relatively challenging to diagnose and manage. This condition may not be as frequent in pediatrics compared to adults, yet it represents a debilitating complication among pediatric ICU patients with notable short and long-term consequences. Diagnosis relies on history and physical exam, aided by electrophysiological studies and muscle biopsies. Serial muscle ultrasound is emerging as a reliable method for early detection of muscle wasting. Preventive measures include modifying risk factors and delaying parenteral nutrition. While no definitive treatment has been identified, early mobilization, and limiting the use of sedatives may influence the outcome of this condition in pediatrics. More data is needed to assess the incidence and prognosis of pediatric ICU-AW.
References
Stevens RD, Marshall SA, Cornblath DR, Hoke A, Needham DM, De Jonghe B, Ali NA, Sharshar T. A framework for diagnosing and classifying intensive care unit-acquired weakness. Critical care medicine. 2009 Oct 1;37(10):S299-308. DOI: https://doi.org/10.1097/CCM.0b013e3181b6ef67
Field-Ridley A, Dharmar M, Steinhorn D, McDonald C, Marcin JP. Intensive Care Unit-Acquired Weakness (ICU-AW) is Associated With Differences in Clinical Outcomes in Critically Ill Children. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2016 Jan;17(1):53–7. DOI: https://doi.org/10.1097/PCC.0000000000000538
Banwell BL, Mildner RJ, Hassall AC, Becker LE, Vajsar J, Shemie SD. Muscle weakness in critically ill children. Neurology. 2003 Dec 23;61(12):1779–82. DOI: https://doi.org/10.1212/01.WNL.0000098886.90030.67
Mahmoud A, Tawfik M, Abdella SAEN, Said N. Critical illness myopathy and polyneuropathy in children admitted to the ICU. Menoufia Med J. 2017 Jul 1;30(3):748–748.
Kasinathan A, Sharawat IK, Singhi P, Jayashree M, Sahu JK, Sankhyan N. Intensive Care Unit—Acquired Weakness in Children: A Prospective Observational Study Using Simplified Serial Electrophysiological Testing (PEDCIMP Study). Neurocrit Care. 2021 Jun 1;34(3):927–34. DOI: https://doi.org/10.1007/s12028-020-01123-x
Thabet Mahmoud A, Tawfik M a. M, Abd el naby SA, Abo El Fotoh WMM, Saleh NY, Abd El Hady NMS. Neurophysiological study of critical illness polyneuropathy and myopathy in mechanically ventilated children; additional aspects in paediatric critical illness comorbidities. Eur J Neurol. 2018;25(7):991-e76. DOI: https://doi.org/10.1111/ene.13649
Fazzini B, Märkl T, Costas C, Blobner M, Schaller SJ, Prowle J, et al. The rate and assessment of muscle wasting during critical illness: a systematic review and meta-analysis. Crit Care. 2023 Jan 3;27(1):2. DOI: https://doi.org/10.1186/s13054-022-04253-0
Fan E, Cheek F, Chlan L, Gosselink R, Hart N, Herridge MS, et al. An official American Thoracic Society Clinical Practice guideline: the diagnosis of intensive care unit-acquired weakness in adults. Am J Respir Crit Care Med. 2014 Dec 15;190(12):1437–46. DOI: https://doi.org/10.1164/rccm.201411-2011ST
Shepherd S, Batra A, Lerner DP. Review of Critical Illness Myopathy and Neuropathy. The Neurohospitalist. 2017 Jan;7(1):41–8. DOI: https://doi.org/10.1177/1941874416663279
Bolton CF. Neuromuscular manifestations of critical illness. Muscle Nerve. 2005;32(2):140–63. DOI: https://doi.org/10.1002/mus.20304
Fink MP, Evans TW. Mechanisms of organ dysfunction in critical illness: report from a Round Table Conference held in Brussels. Intensive Care Med. 2002 Mar 1;28(3):369–75. DOI: https://doi.org/10.1007/s00134-001-1205-2
Williams S, Horrocks IA, Ouvrier RA, Gillis J, Ryan MM. Critical illness polyneuropathy and myopathy in pediatric intensive care: A review: Pediatr Crit Care Med. 2007 Jan;8(1):18–22. DOI: https://doi.org/10.1097/01.pcc.0000256623.01254.40
Yang T, Li Z, Jiang L, Wang Y, Xi X. Risk factors for intensive care unit-acquired weakness: A systematic review and meta-analysis. Acta Neurol Scand. 2018 Aug;138(2):104–14. DOI: https://doi.org/10.1111/ane.12964
Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med. 2020 Apr 1;46(4):637–53. DOI: https://doi.org/10.1007/s00134-020-05944-4
Ong C, Lee JH, Puthucheary ZA. Narrative review of muscle weakness and wasting in pediatric critical illness. Pediatr Med [Internet]. 2021 May 28 [cited 2024 Feb 4];4(0). Available from: https://pm.amegroups.org/article/view/6032 DOI: https://doi.org/10.21037/pm-20-83
Dimachkie MM, Austin SG, Slopis JM, Vriesendorp FJ. Critical Illness Polyneuropathy in Adolescence. J Child Neurol. 1995 Sep 1;10(5):409–11. DOI: https://doi.org/10.1177/088307389501000515
Mudawi K, Rizk T. Reversible Visual Involvement in Critical Illness Polyneuropathy. J Pediatr Neurol. 2018 Sep 14;17. DOI: https://doi.org/10.1055/s-0038-1670723
Charisius J, Stiefel M, Merkel N, Kornhuber M, Haase R, Kramm CM. Critical illness polyneuropathy: A rare but serious adverse event in pediatric oncology. Pediatr Blood Cancer. 2010;54(1):161–5. DOI: https://doi.org/10.1002/pbc.22287
Hund E. Critical illness polyneuropathy. Curr Opin Neurol. 2001 Oct;14(5):649–53. DOI: https://doi.org/10.1097/00019052-200110000-00015
Kukreti V, Shamim M, Khilnani P. Intensive care unit acquired weakness in children: Critical illness polyneuropathy and myopathy. Indian J Crit Care Med Peer-Rev Off Publ Indian Soc Crit Care Med. 2014 Feb;18(2):95–101. DOI: https://doi.org/10.4103/0972-5229.126079
Dhand UK. Clinical Approach to the Weak Patient in the Intensive Care Unit. Respir Care. 2006 Sep 1;51(9):1024–41.
Vondracek P, Bednarik J. Clinical and electrophysiological findings and long-term outcomes in paediatric patients with critical illness polyneuromyopathy. Eur J Paediatr Neurol. 2006 Jul 1;10(4):176–81. DOI: https://doi.org/10.1016/j.ejpn.2006.05.006
Rodriguez B, Larsson L, Z’Graggen WJ. Critical Illness Myopathy: Diagnostic Approach and Resulting Therapeutic Implications. Curr Treat Options Neurol. 2022 Apr 1;24(4):173–82. DOI: https://doi.org/10.1007/s11940-022-00714-7
Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis - The Lancet Neurology [Internet]. [cited 2024 Apr 11]. Available from: https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(11)70178-8/abstract
Klawitter F, Walter U, Axer H, Patejdl R, Ehler J. Neuromuscular Ultrasound in Intensive Care Unit-Acquired Weakness: Current State and Future Directions. Medicina (Mex). 2023 Apr 27;59(5):844. DOI: https://doi.org/10.3390/medicina59050844
Fivez T, Hendrickx A, Van Herpe T, Vlasselaers D, Desmet L, Van den Berghe G, et al. An Analysis of Reliability and Accuracy of Muscle Thickness Ultrasonography in Critically Ill Children and Adults. J Parenter Enter Nutr. 2016;40(7):944–9. DOI: https://doi.org/10.1177/0148607115575033
Valla FV, Young DK, Rabilloud M, Periasami U, John M, Baudin F, et al. Thigh Ultrasound Monitoring Identifies Decreases in Quadriceps Femoris Thickness as a Frequent Observation in Critically Ill Children*. Pediatr Crit Care Med. 2017 Aug;18(8):e339. DOI: https://doi.org/10.1097/PCC.0000000000001235
Hoffmann RM, Ariagno KA, Pham IV, Barnewolt CE, Jarrett DY, Mehta NM, et al. Ultrasound Assessment of Quadriceps Femoris Muscle Thickness in Critically Ill Children*. Pediatr Crit Care Med. 2021 Oct;22(10):889. DOI: https://doi.org/10.1097/PCC.0000000000002747
Valverde Montoro D, Rosa Camacho V, Artacho González L, Camacho Alonso JM. Thigh ultrasound monitoring identifies muscle atrophy in mechanically ventilated pediatric patients. Eur J Pediatr. 2023 Dec 1;182(12):5543–51. DOI: https://doi.org/10.1007/s00431-023-05233-4
Johnson RW, Ng KWP, Dietz AR, Hartman ME, Baty JD, Hasan N, et al. Muscle atrophy in mechanically-ventilated critically ill children. PLOS ONE. 2018 Dec 19;13(12):e0207720. DOI: https://doi.org/10.1371/journal.pone.0207720
Ong C, Lee JH, Senna S, Chia AZH, Wong JJM, Fortier MV, et al. Body Composition and Acquired Functional Impairment in Survivors of Pediatric Critical Illness. Crit Care Med. 2019 Jun;47(6):e445–53. DOI: https://doi.org/10.1097/CCM.0000000000003720
Rehmann R, Enax-Krumova E, Meyer-Frießem CH, Schlaffke L. Quantitative muscle MRI displays clinically relevant myostructural abnormalities in long-term ICU-survivors: a case–control study. BMC Med Imaging. 2023 Mar 18;23(1):38. DOI: https://doi.org/10.1186/s12880-023-00995-7
Leung R, Yiu EM. Practical approach to the child presenting with acute generalised weakness. J Paediatr Child Health [Internet]. [cited 2024 Apr 11];n/a(n/a). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/jpc.16536
Maramattom BV, Wijdicks EFM. Acute neuromuscular weakness in the intensive care unit. Crit Care Med. 2006 Nov;34(11):2835–41. DOI: https://doi.org/10.1097/01.CCM.0000239436.63452.81
Hebbar KB, Stockwell JA, Leong T, Fortenberry JD. Incidence of adrenal insufficiency and impact of corticosteroid supplementation in critically ill children with systemic inflammatory syndrome and vasopressor-dependent shock*. Crit Care Med. 2011 May;39(5):1145. DOI: https://doi.org/10.1097/CCM.0b013e31820eb4e4
Bowden SA, Henry R. Pediatric Adrenal Insufficiency: Diagnosis, Management, and New Therapies. Int J Pediatr. 2018 Nov 1;2018:e1739831. DOI: https://doi.org/10.1155/2018/1739831
Menon K, Ward RE, Lawson ML, Gaboury I, Hutchison JS, Hébert PC. A Prospective Multicenter Study of Adrenal Function in Critically Ill Children. Am J Respir Crit Care Med. 2010 Jul 15;182(2):246–51. DOI: https://doi.org/10.1164/rccm.200911-1738OC
Shabana TS, Anis SG, Ibrahim DM. Association between Thyroid Dysfunction and Intensive Care Unit-Acquired Weakness: A Case-Control Study. Crit Care Res Pract. 2021 Sep 28;2021:e8889036. DOI: https://doi.org/10.1155/2021/8889036
Shang P, Feng J, Wu W, Zhang HL. Intensive Care and Treatment of Severe Guillain–Barré Syndrome. Front Pharmacol. 2021 Apr 27;12:608130. DOI: https://doi.org/10.3389/fphar.2021.608130
Roodbol J, de Wit MCY, van den Berg B, Kahlmann V, Drenthen J, Catsman-Berrevoets CE, et al. Diagnosis of Guillain–Barré syndrome in children and validation of the Brighton criteria. J Neurol. 2017 May 1;264(5):856–61. DOI: https://doi.org/10.1007/s00415-017-8429-8
Berghe GV den, Schoonheydt K, Becx P, Bruyninckx F, Wouters PJ. Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology. 2005 Apr 26;64(8):1348–53. DOI: https://doi.org/10.1212/01.WNL.0000158442.08857.FC
Hermans G, Wilmer A, Meersseman W, Milants I, Wouters PJ, Bobbaers H, et al. Impact of intensive insulin therapy on neuromuscular complications and ventilator dependency in the medical intensive care unit. Am J Respir Crit Care Med. 2007 Mar 1;175(5):480–9. DOI: https://doi.org/10.1164/rccm.200605-665OC
Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial - PubMed [Internet]. [cited 2024 Mar 4]. Available from: https://pubmed.ncbi.nlm.nih.gov/24461665/
García-Pérez-de-Sevilla G, Sánchez-Pinto Pinto B. Effectiveness of physical exercise and neuromuscular electrical stimulation interventions for preventing and treating intensive care unit-acquired weakness: A systematic review of randomized controlled trials. Intensive Crit Care Nurs. 2023 Feb;74:103333. DOI: https://doi.org/10.1016/j.iccn.2022.103333
Zhang L, Hu W, Cai Z, Liu J, Wu J, Deng Y, et al. Early mobilization of critically ill patients in the intensive care unit: A systematic review and meta-analysis. PloS One. 2019;14(10):e0223185. DOI: https://doi.org/10.1371/journal.pone.0223185
Doiron KA, Hoffmann TC, Beller EM. Early intervention (mobilization or active exercise) for critically ill adults in the intensive care unit. Cochrane Database Syst Rev [Internet]. 2018 [cited 2023 Apr 30];(3). Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD010754.pub2/full DOI: https://doi.org/10.1002/14651858.CD010754.pub2
Anekwe DE, Biswas S, Bussières A, Spahija J. Early rehabilitation reduces the likelihood of developing intensive care unit-acquired weakness: a systematic review and meta-analysis. Physiotherapy. 2020 Jun;107:1–10. DOI: https://doi.org/10.1016/j.physio.2019.12.004
Liu M, Luo J, Zhou J, Zhu X. Intervention effect of neuromuscular electrical stimulation on ICU acquired weakness: A meta-analysis. Int J Nurs Sci. 2020 Apr 10;7(2):228–37. DOI: https://doi.org/10.1016/j.ijnss.2020.03.002
Rodriguez PO, Setten M, Maskin LP, Bonelli I, Vidomlansky SR, Attie S, et al. Muscle weakness in septic patients requiring mechanical ventilation: Protective effect of transcutaneous neuromuscular electrical stimulation. J Crit Care. 2012 Jun 1;27(3):319.e1-319.e8. DOI: https://doi.org/10.1016/j.jcrc.2011.04.010
S F, Dr C, Sy S, D B, D F, V D, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med [Internet]. 2009 Mar 26 [cited 2024 Mar 4];360(13). Available from: https://pubmed.ncbi.nlm.nih.gov/19318384/ DOI: https://doi.org/10.1056/NEJMoa0810625
Srinivasan V, Agus MSD. Tight glucose control in critically ill children--a systematic review and meta-analysis. Pediatr Diabetes. 2014 Mar;15(2):75–83. DOI: https://doi.org/10.1111/pedi.12134
Chen L, Li T, Fang F, Zhang Y, Faramand A. Tight glycemic control in critically ill pediatric patients: a systematic review and meta-analysis. Crit Care Lond Engl. 2018 Mar 4;22(1):57. DOI: https://doi.org/10.1186/s13054-018-1976-2
Vanhorebeek I, Jacobs A, Mebis L, Dulfer K, Eveleens R, Van Cleemput H, et al. Impact of critical illness and withholding of early parenteral nutrition in the pediatric intensive care unit on long-term physical performance of children: a 4-year follow-up of the PEPaNIC randomized controlled trial. Crit Care. 2022 May 12;26(1):133. DOI: https://doi.org/10.1186/s13054-022-04010-3
Joosten KFM, Kerklaan D, Verbruggen SCAT. Nutritional support and the role of the stress response in critically ill children. Curr Opin Clin Nutr Metab Care. 2016 May 1;19(3):226–33. DOI: https://doi.org/10.1097/MCO.0000000000000268
Saliski M, Kudchadkar SR. Optimizing Sedation Management to Promote Early Mobilization for Critically Ill Children. J Pediatr Intensive Care. 2015 Dec;04(4):188–93. DOI: https://doi.org/10.1055/s-0035-1563543
Verlaat CWM, Heesen GP, Vet NJ, de Hoog M, van der Hoeven JG, Kox M, et al. Randomized controlled trial of daily interruption of sedatives in critically ill children. Pediatr Anesth. 2014;24(2):151–6. DOI: https://doi.org/10.1111/pan.12245
Gupta K, Gupta VK, Muralindharan J, Singhi S. Randomized controlled trial of interrupted versus continuous sedative infusions in ventilated children. Pediatr Crit Care Med. 2012 Mar;13(2):131. DOI: https://doi.org/10.1097/PCC.0b013e31820aba48
Thabet AM, Sayed ZA, Elsayed Y, Marzouk SA. Effect of Early Mobilization Intervention on Controlling Acquired Muscle Weakness among Pediatric Critically Ill Patients. Assiut Sci Nurs J. 2020 Dec 1;8(23):113–23.
Vollenweider R, Manettas AI, Häni N, Bruin ED de, Knols RH. Passive motion of the lower extremities in sedated and ventilated patients in the ICU – a systematic review of early effects and replicability of Interventions. PLOS ONE. 2022 May 12;17(5):e0267255. DOI: https://doi.org/10.1371/journal.pone.0267255
Betters KA, Hebbar KB, Farthing D, Griego B, Easley T, Turman H, et al. Development and implementation of an early mobility program for mechanically ventilated pediatric patients. J Crit Care. 2017 Oct 1;41:303–8. DOI: https://doi.org/10.1016/j.jcrc.2017.08.004
Adel TZ van den, van Dijk M, de Heer M, Hoekstra S, Steenhorst J, van Rosmalen J, et al. Quality improvement intervention to stimulate early mobilization of critically ill children. Nurs Crit Care [Internet]. 2022 Feb [cited 2023 Apr 24];n/a(n/a). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/nicc.12761 DOI: https://doi.org/10.1111/nicc.12761
Al-Harbi S. Early Mobilization in Pediatric Critical Care: Exploring the Gap Between Theory and Practice in Saudi Arabia. Med Sci Monit Int Med J Exp Clin Res. 2024 Mar 2;30:e942467-1-e942467-13. DOI: https://doi.org/10.12659/MSM.942467
Coşkun-Benlidayı İ, Başaran S, Gül-Mert G, Güzel R. Early rehabilitation of a child with intensive care unit acquired weakness secondary to membranoproliferative glomerulonephritis: A case report. Turk J Pediatr. 2015;57(4):422–5.
Rudolph MW, Slager S, Burgerhof JGM, van Woensel JBM, Alffenaar JWC, Wösten - van Asperen RM, et al. Paediatric Acute Respiratory Distress Syndrome Neuromuscular Blockade study (PAN-study): a phase IV randomised controlled trial of early neuromuscular blockade in moderate-to-severe paediatric acute respiratory distress syndrome. Trials. 2022 Jan 31;23(1):96. DOI: https://doi.org/10.1186/s13063-021-05927-w
Azamfirei R, Mennie C, Dinglas VD, Fatima A, Colantuoni E, Gurses AP, et al. Impact of a multifaceted early mobility intervention for critically ill children — the PICU Up! trial: study protocol for a multicenter stepped-wedge cluster randomized controlled trial. Trials. 2023 Mar 15;24(1):191. DOI: https://doi.org/10.1186/s13063-023-07206-2
Shepherd SJ, Newman R, Brett SJ, Griffith DM. Pharmacological Therapy for the Prevention and Treatment of Weakness After Critical Illness: A Systematic Review*. Crit Care Med. 2016 Jun;44(6):1198. DOI: https://doi.org/10.1097/CCM.0000000000001652
Gusti NRL, Saputro ID, Rizaliyana s., Putra ON. Effects Of Oxandrolone On Lean Body Mass (Lbm) In Severe Burn Patients: A Randomized, Double Blind, Placebo-Controlled Trial. Ann Burns Fire Disasters. 2022 Mar 31;35(1):55–61.
Porro LJ, Herndon DN, Rodriguez NA, Jennings K, Klein GL, Mlcak RP, et al. Five-Year Outcomes after Oxandrolone Administration in Severely Burned Children: A Randomized Clinical Trial of Safety and Efficacy. J Am Coll Surg. 2012 Apr 1;214(4):489–502. DOI: https://doi.org/10.1016/j.jamcollsurg.2011.12.038
Murphy KD, Thomas S, Mlcak RP, Chinkes DL, Klein GL, Herndon DN. Effects of long-term oxandrolone administration in severely burned children. Surgery. 2004 Aug 1;136(2):219–24. DOI: https://doi.org/10.1016/j.surg.2004.04.022
Norbury W. Propranolol attenuates factors affecting hypermetabolism in pediatric burn patients. Crit Care. 2007 Mar 22;11(2):P152. DOI: https://doi.org/10.1186/cc5312
Herndon David N., Hart David W., Wolf Steven E., Chinkes David L., Wolfe Robert R. Reversal of Catabolism by Beta-Blockade after Severe Burns. N Engl J Med. 2001;345(17):1223–9. DOI: https://doi.org/10.1056/NEJMoa010342
Yamada T. BGP-15: A potential therapeutic agent for critical illness myopathy. Acta Physiol. 2020;229(1):e13441. DOI: https://doi.org/10.1111/apha.13441
Nielsen TL, Vissing J, Krag TO. Antimyostatin Treatment in Health and Disease: The Story of Great Expectations and Limited Success. Cells. 2021 Mar;10(3):533. DOI: https://doi.org/10.3390/cells10030533
Latronico N, Peli E, Botteri M. Critical illness myopathy and neuropathy. Curr Opin Crit Care. 2005 Apr;11(2):126. DOI: https://doi.org/10.1097/01.ccx.0000155357.24360.89
Intiso D, Centra AM, Bartolo M, Gatta MT, Gravina M, Di Rienzo F. Recovery and long term functional outcome in people with critical illness polyneuropathy and myopathy: a scoping review. BMC Neurol. 2022 Feb 11;22(1):50. DOI: https://doi.org/10.1186/s12883-022-02570-z
Pinto NP, Rhinesmith EW, Kim TY, Ladner PH, Pollack MM. Long-Term Function After Pediatric Critical Illness: Results From the Survivor Outcomes Study*. Pediatr Crit Care Med. 2017 Mar;18(3):e122. DOI: https://doi.org/10.1097/PCC.0000000000001070
Ducharme-Crevier L, La KA, Francois T, Gerardis G, Beauchamp M, Harrington K, et al. PICU Follow-Up Clinic: Patient and Family Outcomes 2 Months After Discharge*. Pediatr Crit Care Med. 2021 Nov;22(11):935. DOI: https://doi.org/10.1097/PCC.0000000000002789
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 JAP Academy Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.