Bevacizumab for Glioblastoma Multiforme: A Literature Review

Authors

  • Ahmed Bassam Mohd Faculty of medicine, The Hashemite University, Zarqa, Jordan
  • Omar Bassam Mohd Faculty of medicine, The Hashemite University, Zarqa, Jordan
  • Yasmeen Jamal Alabdallat Faculty of medicine, The Hashemite University, Zarqa, Jordan
  • Reem Ayman Ghannam Faculty of medicine, The Hashemite University, Zarqa, Jordan
  • Abdalrahman Altiti Faculty of medicine, The Hashemite University, Zarqa, Jordan
  • Khaled Albakri Faculty of medicine, The Hashemite University, Zarqa, Jordan
  • Abdulrhman Khaity Faculty of Medicine, Elrazi University
  • Salem Al-Dwairy Faculty of medicine, The Hashemite University, Zarqa, Jordan

DOI:

https://doi.org/10.58877/japaj.v2i2.74

Abstract

Background and Aims: Glioblastoma multiforme, a grade IV astrocytoma, is the most common primary brain tumor in adults. Bevacizumab, a humanized anti-vascular endothelial growth factor monoclonal IgG1 antibody, is a Food and Drug Administration-approved agent for the treatment of advanced Glioblastoma multiforme. In this review, we aimed to discuss the therapeutic effects of bevacizumab for Glioblastoma multiforme treatment.

Methods: We searched Google scholar, PubMed, and Scopus using keywords “Glioblastoma multiforme,” “GBM,” and “Bevacizumab.” Two authors screened the records to identify relevant studies and classify them according to our outcomes of interest.

Results: Bevacizumab selectively binds circulating VEGF, interfering with the role of VEGF in endothelial cell differentiation, sprouting, and capillary formation. Consequently, it inhibits tumor neovascularization and induces the development of normal vascular structures

Conclusions: Our review summarized some factors that may maximize the effectiveness of the drug at the lowest possible cost. We mention limitations of bevacizumab use and put forward solutions. Despite progress, many questions remain unanswered; therefore, further well-designed studies are required to investigate the optimal management of Glioblastoma multiforme treatment with bevacizumab.

References

Kanderi T, Gupta V. Glioblastoma multiforme. In: StatPearls, Treasure Island (FL), 2022.

Davis ME. Glioblastoma: Overview of Disease and Treatment. Clin J Oncol Nurs. 2016;20(5 Suppl):S2–8. DOI: https://doi.org/10.1188/16.CJON.S1.2-8

Wirsching HG, Galanis E, Weller M. Glioblastoma. Handb Clin Neurol. 2016;134:381–397. DOI: https://doi.org/10.1016/B978-0-12-802997-8.00023-2

Koltai T, Reshkin SJ, Cardone RA. Resistance to antiangiogenic treatments: a review. In: Morbidelli L, editor. 8th volume. Antiangiogenic Drugs as Chemosensitizers in Cancer Therapy. Academic Press; 2022:147–197. DOI: https://doi.org/10.1016/B978-0-323-90190-1.00014-7

Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69 Suppl 3:4–10. DOI: https://doi.org/10.1159/000088478

Kazazi-Hyseni F, Beijnen JH, Schellens JH. Bevacizumab. Oncologist. 2010;15(8):819–825. DOI: https://doi.org/10.1634/theoncologist.2009-0317

Cohen MH, Shen YL, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist. 2009;14(11):1131–1138. DOI: https://doi.org/10.1634/theoncologist.2009-0121

Hardee ME, Zagzag D. Mechanisms of glioma-associated neovascularization. Am J Pathol. 2012;181(4):1126–1141. DOI: https://doi.org/10.1016/j.ajpath.2012.06.030

Reiss Y, Machein MR, Plate KH. The role of angiopoietins during angiogenesis in gliomas. Brain Pathol. 2005;15(4):311–317. DOI: https://doi.org/10.1111/j.1750-3639.2005.tb00116.x

Jubb AM, Pham TQ, Hanby AM, et al. Expression of vascular endothelial growth factor, hypoxia inducible factor 1alpha, and carbonic anhydrase IX in human tumours. J Clin Pathol. 2004;57(5):504–512. DOI: https://doi.org/10.1136/jcp.2003.012963

Lamszus K, Ulbricht U, Matschke J, Brockmann MA, Fillbrandt R, Westphal M. Levels of soluble vascular endothelial growth factor (VEGF) receptor 1 in astrocytic tumors and its relation to malignancy, vascularity, and VEGF-A. Clin Cancer Res. 2003;9(4):1399–1405.

Norden AD, Drappatz J, Wen PY. Antiangiogenic therapies for high-grade glioma. Nat Rev Neurol. 2009;5(11):610–620. DOI: https://doi.org/10.1038/nrneurol.2009.159

Ellis LM. Mechanisms of action of bevacizumab as a component of therapy for metastatic colorectal cancer. Semin Oncol. 2006;33(5 Suppl 10):S1–7. DOI: https://doi.org/10.1053/j.seminoncol.2006.08.002

Bogusz J, Majchrzak A, Mędra A, Cebula-Obrzut B, Robak T, Smolewski P. Mechanisms of action of the anti-VEGF monoclonal antibody bevacizumab on chronic lymphocytic leukemia cells. Postepy Hig Med Dosw (Online). 2013;67:107–118. DOI: https://doi.org/10.5604/17322693.1038349

Tamura R, Tanaka T, Miyake K, Yoshida K, Sasaki H. Bevacizumab for malignant gliomas: current indications, mechanisms of action and resistance, and markers of response. Brain Tumor Pathol. 2017;34(2):62–77. DOI: https://doi.org/10.1007/s10014-017-0284-x

FDA-NIH Biomarker Working Group 2016. In: BEST. (Biomarkers, EndpointS, and Other Tools) Resource, Silver Spring (MD).

Hovinga KE, McCrea HJ, Brennan C, Huse J, Zheng J, Esquenazi Y, Panageas KS, Tabar V (2019) EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma. J Neurooncol 142 (2):337-345. doi:10.1007/s11060-019-03102-5 DOI: https://doi.org/10.1007/s11060-019-03102-5

Hata N, Mizoguchi M, Kuga D, Hatae R, Akagi Y, Sangatsuda Y, Amemiya T, Michiwaki Y, Fujioka Y, Takigawa K, Suzuki SO, Yoshitake T, Togao O, Hiwatashi A, Yoshimoto K, Iihara K (2020) First-line bevacizumab contributes to survival improvement in glioblastoma patients complementary to temozolomide. J Neurooncol 146 (3):451-458. doi:10.1007/s11060-019-03339-0 DOI: https://doi.org/10.1007/s11060-019-03339-0

Grossmann P, Narayan V, Chang K, Rahman R, Abrey L, Reardon DA, Schwartz LH, Wen PY, Alexander BM, Huang R, Aerts H (2017) Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol 19 (12):1688-1697. doi:10.1093/neuonc/nox092 DOI: https://doi.org/10.1093/neuonc/nox092

Lee CY, Kalra A, Spampinato MV, Tabesh A, Jensen JH, Helpern JA, de Fatima Falangola M, Van Horn MH, Giglio P (2019) Early assessment of recurrent glioblastoma response to bevacizumab treatment by diffusional kurtosis imaging: a preliminary report. Neuroradiol J 32 (5):317-327. doi:10.1177/1971400919861409 DOI: https://doi.org/10.1177/1971400919861409

Ellingson BM, Kim HJ, Woodworth DC, Pope WB, Cloughesy JN, Harris RJ, Lai A, Nghiemphu PL, Cloughesy TF (2014) Recurrent glioblastoma treated with bevacizumab: contrast-enhanced T1-weighted subtraction maps improve tumor delineation and aid prediction of survival in a multicenter clinical trial. Radiology 271 (1):200-210. doi:10.1148/radiol.13131305 DOI: https://doi.org/10.1148/radiol.13131305

Eoli M SA, Aquino D, Scotti A, Anghileri E, Prodi LC, Finocchiaro G, Bruzzone MG (2013) Tumor perfusion during bevacizumab and irinotecan in recurrent glioblastoma: A multimodal approach. Journal of Clinical Oncology 31:2074–2074. doi:10.1200/jco.2013.31.15_suppl.2074. DOI: https://doi.org/10.1200/jco.2013.31.15_suppl.2074

Huang RY, Rahman R, Hamdan A, Kane C, Chen C, Norden AD, Reardon DA, Mukundun S, Wen PY (2013) Recurrent glioblastoma: volumetric assessment and stratification of patient survival with early posttreatment magnetic resonance imaging in patients treated with bevacizumab. Cancer 119 (19):3479-3488. doi:10.1002/cncr.28210 DOI: https://doi.org/10.1002/cncr.28210

Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27(28):4733–4740. DOI: https://doi.org/10.1200/JCO.2008.19.8721

Kreisl TN, Kim L, Moore K, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;27(5):740–745. DOI: https://doi.org/10.1200/JCO.2008.16.3055

Gil-Gil MJ, Mesia C, Rey M, Bruna J. Bevacizumab for the treatment of glioblastoma. Clin Med Insights Oncol. 2013;7:123–135. DOI: https://doi.org/10.4137/CMO.S8503

Wick W, Gorlia T, Bendszus M, et al. Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med. 2017;377(20):1954–1963. DOI: https://doi.org/10.1056/NEJMoa1707358

Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–722. DOI: https://doi.org/10.1056/NEJMoa1308345

Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708. DOI: https://doi.org/10.1056/NEJMoa1308573

Herrlinger U, Schäfer N, Steinbach JP, et al. Bevacizumab plus irinotecan versus temozolomide in newly diagnosed o6-methylguanine-dna methyltransferase nonmethylated glioblastoma: the randomized GLARIUS trial. J Clin Oncol. 2016;34(14):1611–1619. DOI: https://doi.org/10.1200/JCO.2015.63.4691

Wirsching HG, Tabatabai G, Roelcke U, et al. Bevacizumab plus hypofractionated radiotherapy versus radiotherapy alone in elderly patients with glioblastoma: the randomized, open-label, phase II ARTE trial. Ann Oncol. 2018;29(6):1423–1430. DOI: https://doi.org/10.1093/annonc/mdy120

Nagane M, Nishikawa R, Narita Y, et al. Phase II study of single-agent bevacizumab in Japanese patients with recurrent malignant glioma. Jpn J Clin Oncol. 2012;42(10):887–895. DOI: https://doi.org/10.1093/jjco/hys121

Hacibekiroglu I, Kodaz H, Erdogan B, et al. Single-agent bevacizumab is an effective treatment in recurrent glioblastoma. Med Oncol. 2015;32(2):460. DOI: https://doi.org/10.1007/s12032-014-0460-3

Wang Y, Xing D, Zhao M, Wang J, Yang Y. The role of a single angiogenesis inhibitor in the treatment of recurrent glioblastoma multiforme: a meta-analysis and systematic review. PLoS One. 2016;11(3):e0152170. DOI: https://doi.org/10.1371/journal.pone.0152170

Fu P, He YS, Huang Q, et al. Bevacizumab treatment for newly diagnosed glioblastoma: Systematic review and meta-analysis of clinical trials. Mol Clin Oncol. 2016;4(5):833–838. DOI: https://doi.org/10.3892/mco.2016.816

Chen Z, Xu N, Zhao C, Xue T, Wu X, Wang Z. Bevacizumab combined with chemotherapy vs single-agent therapy in recurrent glioblastoma: evidence from randomized controlled trials. Cancer Manag Res. 2018;10:2193–2205. DOI: https://doi.org/10.2147/CMAR.S173323

Eriksson M, Kahari J, Vestman A, et al. Improved treatment of glioblastoma - changes in survival over two decades at a single regional Centre. Acta Oncol. 2019;58(3):334–341. DOI: https://doi.org/10.1080/0284186X.2019.1571278

Ren X, Ai D, Li T, Xia L, Sun L. Effectiveness of lomustine combined with bevacizumab in glioblastoma: a meta-analysis. Front Neurol. 2020;11:603947. DOI: https://doi.org/10.3389/fneur.2020.603947

Song J, Xue YQ, Zhao MM, Xu P. Effectiveness of lomustine and bevacizumab in progressive glioblastoma: a meta-analysis. Onco Targets Ther. 2018;11:3435–3439. DOI: https://doi.org/10.2147/OTT.S160685

Field KM, Simes J, Nowak AK, et al. Randomized phase 2 study of carboplatin and bevacizumab in recurrent glioblastoma. Neuro Oncol. 2015;17(11):1504–1513. DOI: https://doi.org/10.1093/neuonc/nov104

Buie LW, Valgus J. Bevacizumab: a treatment option for recurrent glioblastoma multiforme. Ann Pharmacother. 2008;42(10):1486–1490. DOI: https://doi.org/10.1345/aph.1L030

C. Balana et al., “Bevacizumab and temozolomide versus temozolomide alone as neoadjuvant treatment in unresected glioblastoma: the GENOM 009 randomized phase II trial.,” J Neurooncol, vol. 127, no. 3, pp. 569–79, May 2016, doi: 10.1007/s11060-016-2065-5. DOI: https://doi.org/10.1007/s11060-016-2065-5

Carlson JA, Reddy K, Gaspar LE, et al. Hypofractionated-intensity modulated radiotherapy (hypo-IMRT) and temozolomide (TMZ) with or without bevacizumab (BEV) for newly diagnosed glioblastoma multiforme (GBM): a comparison of two prospective phase II trials. J Neurooncol. 2015;123(2):251–257. DOI: https://doi.org/10.1007/s11060-015-1791-4

B. Chauffert et al., “Randomized phase II trial of irinotecan and bevacizumab as neo-adjuvant and adjuvant to temozolomide-based chemoradiation compared with temozolomide-chemoradiation for unresectable glioblastoma: final results of the TEMAVIR study from ANOCEF†.,” Ann Oncol, vol. 25, no. 7, pp. 1442–1447, Jul. 2014, doi: 10.1093/annonc/mdu148. DOI: https://doi.org/10.1093/annonc/mdu148

W. Taal et al., “Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial.,” Lancet Oncol, vol. 15, no. 9, pp. 943–53, Aug. 2014, doi: 10.1016/S1470-2045(14)70314-6. DOI: https://doi.org/10.1016/S1470-2045(14)70314-6

A. A. Brandes et al., “A Randomized Phase II Trial (TAMIGA) Evaluating the Efficacy and Safety of Continuous Bevacizumab Through Multiple Lines of Treatment for Recurrent Glioblastoma.,” Oncologist, vol. 24, no. 4, pp. 521–528, 2019, doi: 10.1634/theoncologist.2018-0290. DOI: https://doi.org/10.1634/theoncologist.2018-0290

D. A. Reardon et al., “Effect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma,” JAMA Oncology, vol. 6, no. 7, p. 1003, Jul. 2020, doi: 10.1001/jamaoncol.2020.1024. DOI: https://doi.org/10.1001/jamaoncol.2020.1024

M. J. van den Bent et al., “Bevacizumab and temozolomide in patients with first recurrence of WHO grade II and III glioma, without 1p/19q co-deletion (TAVAREC): a randomised controlled phase 2 EORTC trial.,” Lancet Oncol, vol. 19, no. 9, pp. 1170–1179, 2018, doi: 10.1016/S1470-2045(18)30362-0. DOI: https://doi.org/10.1016/S1470-2045(18)30362-0

Gleeson JP, Keane F, Keegan NM, et al. Similar overall survival with reduced vs. standard dose bevacizumab monotherapy in progressive glioblastoma. Cancer Med. 2020;9(2):469–475. DOI: https://doi.org/10.1002/cam4.2616

Wong ET, Gautam S, Malchow C, Lun M, Pan E, Brem S. Bevacizumab for recurrent glioblastoma multiforme: a meta-analysis. J Natl Compr Canc Netw. 2011;9(4):403–407. DOI: https://doi.org/10.6004/jnccn.2011.0037

Rigakos G, Kyriazoglou A, Vernadou A, et al. Bevacizumab in high grade glioma: Is there a subgroup that benefits? Hematol Med Oncol. 2017. doi:10.15761/HMO.1000131. DOI: https://doi.org/10.15761/HMO.1000131

Maurice C, Mason WP. CN-14 * retrospective analysis of ischemic cerebral strokes in patients diagnosed with a glioblastoma during the course of a bevacizumab treatment. Neuro Oncol. 2014;16(suppl 5):v49. DOI: https://doi.org/10.1093/neuonc/nou243.14

Gordon CR, Rojavin Y, Patel M, et al. A review on bevacizumab and surgical wound healing: an important warning to all surgeons. Ann Plast Surg. 2009;62(6):707–709. DOI: https://doi.org/10.1097/SAP.0b013e3181828141

Levin VA, Bidaut L, Hou P, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79(5):1487–1495. DOI: https://doi.org/10.1016/j.ijrobp.2009.12.061

Sadraei NH, Dahiya S, Chao ST, et al. Treatment of cerebral radiation necrosis with bevacizumab: the Cleveland clinic experience. Am J Clin Oncol. 2015;38(3):304–310. DOI: https://doi.org/10.1097/COC.0b013e31829c3139

Yonezawa S, Miwa K, Shinoda J, et al. Bevacizumab treatment leads to observable morphological and metabolic changes in brain radiation necrosis. J Neurooncol. 2014;119(1):101–109. DOI: https://doi.org/10.1007/s11060-014-1453-y

Zhuang H, Yuan X, Zheng Y, et al. A study on the evaluation method and recent clinical efficacy of bevacizumab on the treatment of radiation cerebral necrosis. Sci Rep. 2016;6:24364. DOI: https://doi.org/10.1038/srep24364

Kulinich DP, Sheppard JP, Nguyen T, et al. Radiotherapy versus combination radiotherapy-bevacizumab for the treatment of recurrent high-grade glioma: a systematic review. Acta Neurochir (Wien). 2021;163(7):1921–1934. DOI: https://doi.org/10.1007/s00701-021-04794-3

Chamberlain MC. Bevacizumab plus irinotecan in recurrent glioblastoma. J Clin Oncol. 2008;26(6):1012–1013; author reply 1013. DOI: https://doi.org/10.1200/JCO.2007.15.1605

Chamberlain MC. Bevacizumab for the treatment of recurrent glioblastoma. Clin Med Insights Oncol. 2011;5:117–129. DOI: https://doi.org/10.4137/CMO.S7232

Kumar I, Staton CA, Cross SS, Reed MW, Brown NJ. Angiogenesis, vascular endothelial growth factor and its receptors in human surgical wounds. Br J Surg. 2009;96(12):1484–1491. DOI: https://doi.org/10.1002/bjs.6778

US Food and Drug Administration. Polivy US prescribing information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761121s000lbl.pdf, 2020.

Reardon DA, Herndon JE, Peters KB, et al. Bevacizumab continuation beyond initial bevacizumab progression among recurrent glioblastoma patients. Br J Cancer. 2012;107(9):1481–1487. DOI: https://doi.org/10.1038/bjc.2012.415

Ramezani S, Vousooghi N, Joghataei MT, Chabok SY. The role of kinase signaling in resistance to bevacizumab therapy for glioblastoma multiforme. Cancer Biother Radiopharm. 2019;34(6):345–354. DOI: https://doi.org/10.1089/cbr.2018.2651

Simon T, Coquerel B, Petit A, et al. Direct effect of bevacizumab on glioblastoma cell lines in vitro. Neuromolecular Med. 2014;16(4):752–771. DOI: https://doi.org/10.1007/s12017-014-8324-8

Lucio-Eterovic AK, Piao Y, de Groot JF. Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin Cancer Res. 2009;15(14):4589–4599. DOI: https://doi.org/10.1158/1078-0432.CCR-09-0575

Ellis LM, Hicklin DJ. Pathways mediating resistance to vascular endothelial growth factor-targeted therapy. Clin Cancer Res. 2008;14(20):6371–6375. DOI: https://doi.org/10.1158/1078-0432.CCR-07-5287

Lu KV, Chang JP, Parachoniak CA, et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell. 2012;22(1):21–35. DOI: https://doi.org/10.1016/j.ccr.2012.05.037

Michaelsen SR, Staberg M, Pedersen H, et al. VEGF-C sustains VEGFR2 activation under bevacizumab therapy and promotes glioblastoma maintenance. Neuro Oncol. 2018;20(11):1462–1474. DOI: https://doi.org/10.1093/neuonc/noy103

Mar N, Desjardins A, Vredenburgh JJ. CCR 20th Anniversary commentary: bevacizumab in the treatment of glioblastoma--the progress and the limitations. Clin Cancer Res. 2015;21(19):4248–4250. DOI: https://doi.org/10.1158/1078-0432.CCR-15-1381

Sevastre AS, Costachi A, Tataranu LG, et al. Glioblastoma pharmacotherapy: a multifaceted perspective of conventional and emerging treatments (Review). Exp Ther Med. 2021;22(6):1408. DOI: https://doi.org/10.3892/etm.2021.10844

Carvalho B, Lopes RG, Linhares P, et al. Hypertension and proteinuria as clinical biomarkers of response to bevacizumab in glioblastoma patients. J Neurooncol. 2020;147(1):109–116. DOI: https://doi.org/10.1007/s11060-020-03404-z

Taugourdeau-Raymond S, Rouby F, Default A, Jean-Pastor MJ. Bevacizumab-induced serious side-effects: a review of the French pharmacovigilance database. Eur J Clin Pharmacol. 2012;68(7):1103–1107. DOI: https://doi.org/10.1007/s00228-012-1232-7

Yu Z, Zhao G, Zhang Z, et al. Efficacy and safety of bevacizumab for the treatment of glioblastoma. Exp Ther Med. 2016;11(2):371–380. DOI: https://doi.org/10.3892/etm.2015.2947

Blick SK, Keating GM, Wagstaff AJ. Ranibizumab. Drugs. 2007;67(8):1199–206; discussion 1207–1209. DOI: https://doi.org/10.2165/00003495-200767080-00007

Zou L, Lai H, Zhou Q, Xiao F. Lasting controversy on ranibizumab and bevacizumab. Theranostics. 2011;1:395–402. DOI: https://doi.org/10.7150/thno/v01p0395

Chen Y, Han F. Profile of ranibizumab: efficacy and safety for the treatment of wet age-related macular degeneration. Ther Clin Risk Manag. 2012;8:343–351. DOI: https://doi.org/10.2147/TCRM.S32801

Gaudreault J, Fei D, Rusit J, Suboc P, Shiu V. Preclinical pharmacokinetics of Ranibizumab (rhuFabV2) after a single intravitreal administration. Invest Ophthalmol Vis Sci. 2005;46(2):726–733. DOI: https://doi.org/10.1167/iovs.04-0601

Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology. 2006;113(3):363–372.e5. DOI: https://doi.org/10.1016/j.ophtha.2005.11.019

Magdelaine-Beuzelin C, Pinault C, Paintaud G, Watier H. Therapeutic antibodies in ophthalmology: old is new again. MAbs. 2010;2(2):176–180. DOI: https://doi.org/10.4161/mabs.2.2.11205

Downloads

Published

2024-06-01

How to Cite

Mohd, A. B., Mohd, O. B., Alabdallat, Y. J., Ghannam, R. A., Altiti, A., Albakri, K., … Al-Dwairy, S. (2024). Bevacizumab for Glioblastoma Multiforme: A Literature Review. JAP Academy Journal, 2(2). https://doi.org/10.58877/japaj.v2i2.74

Issue

Section

Review Articles